Garden Fitness

1. The Great Green Garden Gym
2. Energy in Food: Quality vs. Quantity
3. Frozen Energy
4. Garden Journal
Unit Intro:
Most people know that physical activity is important in maintaining a healthy body weight and good health, but they may not have thought about the specific mechanisms that link diet and physical activity together. This unit allows students to observe energy changing forms from stored energy to light and heat energy. This is demonstrated as they burn an almond, illustrating how energy moves from the sun, to our food, and into our bodies, where it is either stored or used to be active.

*NOTE Before setting up for any lessons in this unit, make sure you are aware of any student nut allergies. Some nut allergies are so severe that it is dangerous for allergic people to be around nuts.

Teacher Vocabulary:

1. The Great Green Garden Gym

Energy - the capacity to do work or change the position or physical state of something.

Fitness - the physical state of being able to comfortably complete activities of daily living and still have energy left over for recreation or responding to emergencies.

Kinetic energy - the energy of an object because of its movement. Kinetic energy is referred to as “active” energy in this unit.

Physical activity - any form of exercise or movement. Physical activity requires the conversion of energy stored in our food or in our bodies into “active” energy.

Potential energy - energy that is contained in something that gives it the potential to do work. The stored energy in food is stored in chemical bonds in molecules, such as in sugars and fats. When these bonds are broken, energy is released, which lets our bodies do work. Potential energy is referred to as “stored” energy in this unit.

Transformation (of energy) - the process by which energy is changed from one form to another. Photosynthesis is the process by which plants transform the energy in sunlight into energy stored as sugars in plant tissues.

2. Energy in Food: Quality vs. Quantity

Calorie - a standard unit for measuring energy. The calories a food contains indicates how much energy is stored in it; when we eat these foods our body “burns” calories by converting the stored energy into active energy.
3. Frozen Energy (No Vocabulary)

Linking to the Garden (refer to pages 18 and 19 in curriculum Introduction)

This unit is an extra unit highlighting the importance of physical activity to a healthy lifestyle. It does not fit into any single place in the flow of lessons, but it works best when you are able to get some time in the garden so that students can practice being physically active while in the garden.

Background:

In 2005, the United States Department of Agriculture (USDA) released a revised and updated visual nutrition guide. The revised messages were conveyed through a campaign known as “MyPyramid”. This version of the food pyramid focuses on developing a personalized nutrition plan based on age, weight, gender, and activity level. The incorporation of physical activity as a key component of nutrition is a new feature of MyPyramid. The goal is to increase recognition of the many benefits of physical activity, and the need to balance calories expended with calories consumed in order to maintain a healthy weight and good overall health.

Over recent years, physical activity has become increasingly recognized as an essential component to overall health. As more jobs and leisure activities trend toward the sedentary (e.g., “desk” jobs, T.V. watching, video games), increased awareness is needed to ensure that we are expending the calories that we consume. Mounting research suggests that children need at least 60 minutes of vigorous activity on most days, and adults benefit from 30-60 minutes. Adults who have lost weight may require as many as 90 minutes of vigorous activity on most days to maintain weight loss. This time can be spent all at once or in increments of at least 10 minutes in length.

While this sounds intimidating to some, there are many benefits to engaging in regular physical activity. Regular physical activity is important for keeping our heart and lungs healthy, building muscle and strong bones, and maintaining flexibility and agility. Furthermore, regular exercise lowers the risk of disease, develops self-esteem, improves mood, and is just plain fun! The best part is that many daily activities, if done with gusto, are considered moderate physical activity.

Good nutrition requires us to consider how much we eat, what nutrients we are taking in, and how we are spending our energy. Gardening is one easy way to meet all of these objectives: working in the garden provides an opportunity to be physically active, and the food it produces is both low in calories and high in nutrients!
<table>
<thead>
<tr>
<th>#</th>
<th>Lesson</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 2</td>
<td>A.1.</td>
<td>a. Attend to the speaker</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
<td>A.1.</td>
<td>b. Respond appropriately to clarify and understand</td>
<td>c. Respond appropriately to clarify and understand</td>
</tr>
<tr>
<td>3</td>
<td>1, 2</td>
<td>A.1.</td>
<td>d. Relate prior knowledge</td>
<td>d. Follow a set of multi-step directions</td>
</tr>
<tr>
<td>4</td>
<td>1, 2</td>
<td>A.2.</td>
<td>c. Demonstrate an understanding of what is heard by retelling, asking questions, and relating prior knowledge</td>
<td>c. Demonstrate an understanding of what is heard by retelling, asking questions, and relating prior knowledge</td>
<td>c. Demonstrate an understanding of what is heard by retelling, asking questions, and relating prior knowledge</td>
<td>c. Demonstrate an understanding of what is heard by retelling, asking questions, and relating prior knowledge</td>
<td>c. Demonstrate an understanding of what is heard by retelling, asking questions, and relating prior knowledge</td>
</tr>
<tr>
<td>6</td>
<td>1, 2</td>
<td>A.2.</td>
<td>e. Listen carefully to expand and develop vocabulary</td>
</tr>
<tr>
<td>7</td>
<td>1, 2</td>
<td>A.2.</td>
<td>f. Make judgments based on information heard</td>
</tr>
<tr>
<td>8</td>
<td>1, 2</td>
<td>A.2.</td>
<td>g. Elaborate on the information and ideas presented</td>
</tr>
</tbody>
</table>

Standard 6.0 Listening
<table>
<thead>
<tr>
<th>Lesson</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.1</td>
<td>a. Describe what can be learned about things by just observing those things carefully and adding information by sometimes doing something to those things and noting what happens.</td>
<td>b. Seek information through observation, exploration, and investigation.</td>
<td>a. Develop reasonable explanations for observations made, investigations completed, and information gained by sharing ideas and listening to others' ideas.</td>
<td>b. Offer reasons for their findings and consider reasons suggested by others.</td>
<td>b. Describe things as accurately as possible and compare observations with those of others.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0.2</td>
<td>a. Provide reasons for accepting or rejecting ideas examined.</td>
<td>a. Develop explanations using knowledge possessed and evidence from observations, reliable print resources, and investigations.</td>
<td>a. Construct and share reasonable explanations for questions asked.</td>
<td>a. Develop reasonable explanations for observations made, investigations completed, and information gained by sharing ideas and listening to others' ideas.</td>
<td>1, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State Curriculum Identifiers - Garden Fitness - Science Standards

- **1st**
- **2nd**
- **3rd**
- **4th**
- **5th**
- **6th**
- **7th**
- **8th**
3.0 Life Science

<table>
<thead>
<tr>
<th>Lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
</tr>
</tbody>
</table>

- **E.1.** Identify the sun as the primary source of energy for photosynthesis and animals use food for energy and growth.
- **E.1.** Recognize that things that give off light also give off heat.

| 1, 2 |

- **E.1.** Identify the sun as the primary source of energy for photosynthesis and animals use food for energy and growth.
- **E.1.** Recognize that things that give off light also give off heat.

<table>
<thead>
<tr>
<th>5.0 Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
</tr>
</tbody>
</table>

- **B.1.** Recognize that things that give off light also give off heat.

| 1, 2 |

- **B.1.** Recognize that things that give off light also give off heat.
Standard 6.0 Nutrition and Fitness

<table>
<thead>
<tr>
<th>Lesson #</th>
<th>5th</th>
<th>4th</th>
<th>3rd</th>
<th>2nd</th>
<th>1st</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **E.1.** Discuss the importance of physical fitness and what it means to each individual.
- **E.1.** Compare the relationship between caloric intake and physical activity.
- **E.1.** Describe how caloric intake and physical activity impacts exercise.
- **E.1.** Illustrate the importance of maintaining a balanced caloric intake and physical activity.
- **E.1.** Define calorie and caloric output.
- **E.1.** Explain how caloric intake impacts physical activity.
Lesson #1: Almond Energy Burn

Time required: 35 minutes (classroom activities: 10 minutes; outdoor activities (may include gardening): 25 minutes)

Lesson Overview:

1. Students will discuss the concept of energy and its different forms.

2. Students will move outside to observe a demonstration of how energy is transformed from “stored” sources to “active” sources. They will use this information to consider how energy from the sun is transformed by plants, and then again by our bodies.

Students will learn that:

- Energy has many forms, including “stored” energy (also called potential energy) and “active” energy (typically called kinetic energy).
- Plants store energy from the sun. When we eat plants, our bodies can use this stored energy to be active.
- A healthy lifestyle involves both eating proper amounts of nutritious foods and physical activity.
- Gardening is a good source of both nutritious foods and physical exercise.

Gather

- 1 almond nut
- 1 potato, cut in half
- Paperclip
- Cardboard box (about the size of a shoe box or larger)
- Long “barbeque” lighter
- Stopwatch or watch with a second hand

Setup:

- Cut the bottom out of a cardboard box (this box will serve as a wind shield during the demonstration and will ensure students stay a safe distance from the burning almond).

Process:

Introduction (5 minutes)

1. Display the almond.

2. Ask students what part of the plant the almond is.

3. Explain that the almond is a seed.
4. If you have completed the “Seed Magic” unit, students should recall that almonds and other seeds store energy to help a new plant start growing. When people eat seeds, they give our bodies energy.

Engagement (5 minutes)

Discussion Questions

1. What does the word “energy” mean to you?
2. What are some words that are related to energy?

Key Points

1. Energy is hard to define because energy can take many forms.
2. Energy is related to many different things such as food, electricity, exercise, wind, gasoline, motion, and heat.
3. Energy can be broken into two categories: energy that is stored, or “inactive”, and energy that is burned, or “active”.

Activity (25 minutes) Almond Energy Burn Activity

SUMMARY OF ACTIVITY

Students will be taken outside to make observations while watching an almond burn. This activity is a demonstration of energy changing forms as the almond slowly burns, then eventually burns out as the energy is used up. By observing a burning almond, students will see that energy that is stored in a food plant can be converted to light and heat, just as our bodies convert energy in our food to heat and motion.

Key Points

1. Energy exists in many forms and can be changed from one form to another.
2. Plants get energy from the sun, and animals get energy from eating plants AND other animals. Both plants and animals either use energy for growth and metabolism, or store it in their tissues.
3. It is important to keep an energy balance in our bodies. All of the excess energy that we consume in our food must be burned off by being physically active, or we will store the excess energy as fat.
Activity Process (25 minutes)

1. Gather all materials and take students outside to an area with either concrete or bare soil. Set the bottomless box on the ground with half of the potato inside (cut side down) and ask students to gather around it in a circle (some students may have to kneel so that everyone can see inside the box).

2. The potato and paperclip will serve as a stand for the almond while it burns. Use the paperclip to make a cradle for the almond. Straighten the large loop of the paperclip, and bend the small loop in half to set the almond inside.

3. Stick the straight end of the paperclip in the potato, while the almond lies in the cradle.

4. Ask students to make a hypothesis about what will happen when the almond is lit on fire.

5. Light the almond (it might take several seconds to stay lit) and have one of the students record how much time it takes to burn using a stopwatch or watch with a second hand.

Discussion Questions

1. What forms of energy are being released by the almond as it burns?

2. Where is the light and the heat coming from?

3. Where did the almond get the light and the heat?

4. What made the fire go out?

Key Points

1. The almond is giving off light and heat energy.

2. The light and heat are produced from the energy that the almond plant stored in the nut while the almond plant was growing.

3. The energy in the almond came from the sun. The almond plant transformed it into stored energy through photosynthesis.

4. The almond stops burning when all of this stored energy has been used up.

6. SAY:

We know that plants get energy from the sun. Through photosynthesis, the plant changes light energy into stored energy. That energy is then used by the plant to grow, or it is stored for later use. Seeds store energy so that new plants can start growing. Some plants also store energy in roots and fruits. Energy that is stored, such as the energy in the almond, can change forms to produce “active” energy, such as the light and heat that was released from the almond as it burned.
7. Discuss the above statements. Highlight the fact that energy stored in plants is available to us when we eat plant foods.

8. SAY:

 Just like plants turn light energy into stored energy, our bodies turn stored energy in plants into other forms of energy. What does our body do with the stored energy in plants when we eat foods such as the almond?

9. Explain that our bodies turn stored energy in foods into active energy that is used to do things like make our heart pump and our muscles work. If the energy is not used for body functions or physical activity, it is stored in the form of fat.

10. Explain that it is important to achieve an energy balance in our bodies. This means that all of the calories we take in are transformed into active energy, rather than stored as fat.

11. Emphasize that physical activity is important for many reasons, not just to prevent weight gain. Being physically active is extremely good for our bodies.

12. Ask students what some of the benefits of being physically active are. Be sure to highlight items such as fun, cardiovascular health, self-esteem, coordination, stress relief, mood elevation, strong muscles, strong bones, etc.

13. Explain that gardening is a great activity because it contributes to both sides of the energy equation. The food we grow provides energy as well as vitamins, minerals, phytochemicals, and fiber. Gardening is also a great way to use some of those calories while we are moving, bending, stretching, and having fun.

14. If appropriate, complete gardening activities. You may want to have students take their pulse before beginning activities and after a few minutes of work to convince them that they are actually getting exercise while they work.
Lesson #2: Energy in Food: Quality vs. Quantity

Time required: 35 minutes (classroom activities: 20 minutes; outdoor activities: 15 minutes)

Lesson Overview:

1. Students will complete an experiment demonstrating that different foods contain different amounts of energy.

2. Students will use their observations and conclusions from the activity to discuss some of the factors that should be considered in making food choices.

Students will learn that:

• Different foods contain different amounts of energy.
• Balancing calories consumed with calories expended through body functions and physical activity is important for maintaining good health.
• In deciding whether a food is good for our bodies, we must consider how much and what kinds of nutrients a food provides in addition to how many calories it has.
• When we consume “quality calories”, our bodies get energy, but also vitamins, minerals, and other nutrients we need to grow.

Gather

- 1 almond nut
- 1 mini marshmallow
- 1 potato, cut in half (you may reuse the potato from Lesson #1)
- 2 paper clips
- Long “barbeque” lighter
- Cardboard box with bottom cut out (you may reuse the box from Lesson #1)

Setup:

- Make copies of the following handouts for each student:
 - “Reading Nutrition Facts Labels”.
 - “Almond Versus Marshmallow Nutrition Facts Label”.

Process:

Introduction (5 minutes)

1. Review the conclusions from the demonstration in Lesson #1.

2. Remind students that there is more to good nutrition than energy. Food choices must be judged based on both energy and nutrient content.
Engagement (5 minutes)

Discussion Questions

1. What forms does energy take as it travels from the sun to plants to our bodies?
2. What does it mean to achieve an “energy balance”?

Key Points

1. Light energy from the sun becomes stored energy in plants. That stored energy is converted into active energy in our bodies when we eat plant foods.
2. When all of the energy that we consume from our food is used by our bodies to function and be active, we are in energy balance. If we consume more energy than our bodies need, we need to increase our physical activity to use the extra calories. Otherwise, our body stores the extra energy in the form of fat.

Activity (25 minutes)

SUMMARY OF ACTIVITIES

1. Students will go outside and observe stored energy as it is converted to active energy in two different foods: almonds and marshmallows. The marshmallow will burn faster than the almond because it contains less stored energy (i.e., it has fewer calories).
2. The students will review the nutrition facts labels for these foods and consider both the quality and the quantity of the calories they contain when deciding which is a healthier food choice.

Key Points

1. Foods that have more calories will take a longer time for our bodies to burn off.
2. It is important to consider the nutrient content, as well as calories, of foods we eat, and always remember to include foods high in vitamins, minerals, fiber, and other nutrients.

Activity Process #1 (15 minutes) Almond Vs. Marshmallow Energy Burn

1. Take students outside to complete the experiment.
2. Place the bottomless box on the bare ground or concrete to contain the experiment. Place the two potato halves (flat side down) inside the box.

3. The potato and paperclip will serve as a stand for the foods as they burn. Bend two paperclips to form a cradle with a straight stem. Poke the straight stem of each paperclip into a potato so that it stands up.

4. Place one almond in one cradle, and one marshmallow in the other.

5. Review that, in Lesson #1, an almond was burned so that we could observe how energy stored in the almond is converted into light and heat energy. This time we are going to burn two different foods and compare our results.

6. Ask students to hypothesize what will happen. Do you think they will burn exactly the same? If not, what differences do you expect to see while burning the two separate food items?

7. Light the almond and marshmallow on fire. If you have a stop watch, you can burn one at a time and record the time it takes for each to burn out. If you do not, you can light them both at the same time.

8. Make observations as a class. Note: The marshmallow should burn much faster than the almond.

Activity Process #2 (10 minutes) Almond Versus Marshmallow Nutrition Facts Label Discussion

1. Return to the classroom and review what the students observed during the experiment.

Discussion Questions

1. The almond and the marshmallow are roughly the same size. Why did the marshmallow burn faster?

2. What does this tell us about these foods? Is one a better choice than the other?

Key Points

1. The almond contained more stored energy than the marshmallow; therefore, it burned for a longer period of time. Energy is measured in calories. The number of calories in a food tells us how much energy is stored in it. The almond contains more calories, and therefore it took longer for all of that energy to be converted to light and heat.

2. It might seem that the marshmallow is a better food choice because it contains fewer calories for our body to have to burn off. However, when considering the energy content (calories) of a food, you must also consider the quality of the nutrients you’re getting along with those calories.

2. Pass out the “Reading Nutrition Facts Labels” handout.
3. Explain to students that nutrition facts labels help us judge whether or not a food is a healthy choice. Foods contain nutrients that our bodies need in order to grow and be healthy, but they can also contain things, such as saturated and trans fats, added sugar, and lots of salt, that can be unhealthy if we eat too much.

4. Explain that the servings size amount is found at the top of the food label and is the most important place to start when getting your nutrition information. Emphasize that all of the information contained in the nutrition facts label pertains to this serving amount. Help students to understand portion sizes.

5. Point out the lines on the nutrition facts label that show which items we need to make sure we get enough of: fiber, protein, vitamin A, vitamin C, calcium, and iron. Emphasize that we should be choosing foods throughout the day that contain these items.

6. Point out the lines on the nutrition facts label that show which items that we should try not to eat too much of: cholesterol, sodium, and fat (highlighting the difference between unhealthy saturated and trans fats versus healthy unsaturated fats).

8. Review the label, and have students circle the nutrients they should get enough of and label the circle with “get enough”. Have the students circle the things they should be careful not to get too much of and label the circle with “not too much”.

9. Highlight the differences between the two foods: almonds are higher in calories and fat, but they are also high in protein and provide fiber. Most of the fats in almonds are healthy fats (they are low in saturated fat and have no trans fats). Marshmallows on the other hand, are lower in calories, but do not provide those important nutrients that we should aim to “get enough” of throughout the day.

10. Ask students which food choice they think is healthier.

Key Points

1. There are two things to think about when you consider the energy content of food, measured in calories.

 a. Quantity: Balancing calories in with calories out. We want to be sure we don’t eat more calories than we use being active. Being physically active is a great way to ensure that we use all of the energy we consume. Being physically active also helps keep our muscles, bones, hearts, and lungs strong, and it makes us feel good.

 b. Quality: The foods that we eat should contain quality calories. We can get energy from eating a lot of candy, but candy provides no vitamins, minerals, fiber, or other nutrients, therefore it is not a good dietary choice.

2. Remind students that gardening is a form of physical activity, and we can actually burn lots of calories while working. We are also producing foods that contain high quality calories. Remember that vegetables are low in calories but high in vitamins, minerals, fiber, and phytochemicals. That’s a lot of bang for our buck!
Lesson #3: Frozen Energy

Time required: 25 minutes (food demo: 25 minutes)

Lesson Overview:

1. Students will help in the preparation of an energy smoothie which provides them with energy, as well as other important nutrients.

Students will learn that:
- A healthy lifestyle involves both eating proper amounts of nutritious foods and physical activity.
- Healthy foods provide lots of nutrients in addition to energy.

Gather

- Ingredients for “PBJ Energy Smoothie” recipe
- Equipment for “PBJ Energy Smoothie” recipe

Setup:
- Copies of “PBJ Energy Smoothie” recipe

Process:

Introduction (5 minutes)

1. Review the conclusions from the experiments from Lessons #1 and #2. Highlight the different types of energy, the concept of energy balance in the body, and the important factors that influence nutritious food choices.

Engagement (5 minutes)

Discussion Questions

1. What are two key points we should consider when judging whether a food is “worth” the calories?

Key Points

1. We should consider both the number of calories it contains, as well as how much and what types of nutrients it contains— in other words the quality of the calories. Foods that are low in calories and high in nutrients are the best choices. Foods that are high in calories but low in nutrients should be considered “sometimes foods”.
Activity (30 minutes) “PBJ Energy Smoothie” Recipe

SUMMARY OF ACTIVITY

Students will prepare a smoothie that provides energy for being active and lots of nutrients.

NOTE: Please see allergy note in unit introduction.

Activity Process (30 minutes)

1. Hand out recipes and set up blender.

2. Review the parts of the recipe: Introduction, Ingredients, and Directions. Point out that the ingredients in this recipe provide good sources of energy, calcium, protein, vitamins, phytochemicals, and healthy fats.

3. **NOTE:** Remember to review with students the importance of clean hands when preparing food. Have all students wash their hands before they begin to handle the food. The curriculum introduction has a useful description of proper hand-washing techniques.

4. Have students follow recipe to make smoothies.

5. Encourage students to take the PBJ Energy Smoothie recipe home to share with their family.
Journal

Time Required: 20 minutes (classroom activities: 20 minutes)

Lesson Overview:
1. Students will write a creative written response to a prompt related to the content covered in the “Garden Fitness” Unit.

Process:

1. Read the prompt aloud to your students. After answering any questions, allow them time to write a response. This journal is not printed in the Garden Journal collection so it will need to be copied and given to students as a handout.

Prompt:

Plants are amazing! You just learned that they can take energy from the sun and turn it into energy that they use to grow, and energy our bodies can use when we eat plant foods. You might even think of plants as batteries that store the sun’s energy.

Eating healthy foods from our garden will help us be healthy and full of energy. But it’s important that we use that energy to be active. In the space below, write a paragraph describing some of your favorite ways to be active. In a second paragraph, write how you feel after doing some of those favorite activities.
Plants are amazing! You just learned that they can take energy from the sun and turn it into energy that they use to grow, and energy our bodies can use when we eat plant foods. You might even think of plants as batteries that store the sun’s energy.

Eating healthy foods from our garden will help us be healthy and full of energy. But it is important that we use that energy to be active. In the space below, write a paragraph describing some of your favorite ways to be active. In a second paragraph, write how you feel after doing some of those favorite activities.
Nutrition Facts

Serving Size 1/2 cup (114 g)
Servings Per Container 4

Amount Per Serving

| Calories | 90 Calories from Fat 30 |

% Daily Value*

Total Fat	3g	5%
Saturated Fat	0g	0%
Trans Fat	0g	0%
Cholesterol	0mg	0%
Sodium	300mg	13%

Total Carbohydrate

| Dietary Fiber | 3g | 12% |
| Sugars | 3g |

Protein

| Vitamin A | 80% | Calcium | 4% |
| Vitamin C | 60% | Iron | 4% |

*Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs:

| Calories: | 2,000 | 2,500 |

Total Fat	Less than	65g	80g
Sat Fat	Less than	20g	25g
Cholesterol	Less than	300mg	300 mg
Sodium	Less than	2,400mg	2,400 mg
Total Carbohydrate	300g	375g	
Dietary fiber	25g	30g	

Calories per gram:

- Fat 9
- Carbohydrate 4
- Protein 4
Almonds versus Marshmallow
Nutrition Facts Label

Almonds

<table>
<thead>
<tr>
<th>Nutrition Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serving Size: 1 ounce 28g (1 ounce (28g))</td>
</tr>
<tr>
<td>Servings per container: 1</td>
</tr>
<tr>
<td>Amount Per Serving</td>
</tr>
<tr>
<td>Calories: 161</td>
</tr>
<tr>
<td>Calories from Fat: 116</td>
</tr>
<tr>
<td>% Daily Value*</td>
</tr>
<tr>
<td>Total Fat: 14g (21%)</td>
</tr>
<tr>
<td>Saturated Fat: 1g (5%)</td>
</tr>
<tr>
<td>Trans Fat: 0g</td>
</tr>
<tr>
<td>Cholesterol: 0mg (0%)</td>
</tr>
<tr>
<td>Sodium: 0mg (0%)</td>
</tr>
<tr>
<td>Total Carbohydrate: 6g (2%)</td>
</tr>
<tr>
<td>Dietary Fiber: 3g (14%)</td>
</tr>
<tr>
<td>Sugars: 1g</td>
</tr>
<tr>
<td>Protein: 6g</td>
</tr>
<tr>
<td>Vitamin A: 0%</td>
</tr>
<tr>
<td>Vitamin C: 0%</td>
</tr>
<tr>
<td>Calcium: 7%</td>
</tr>
<tr>
<td>Iron: 6%</td>
</tr>
</tbody>
</table>

*Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs.

| Calories per gram: |
| Fat: 9 |
| Carbohydrate: 4 |
| Protein: 4 |

© www.NutritionData.com

Mini Marshmallows

<table>
<thead>
<tr>
<th>Nutrition Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serving Size: 1 ounce 28g (1 ounce (28g))</td>
</tr>
<tr>
<td>Servings per container: 1</td>
</tr>
<tr>
<td>Amount Per Serving</td>
</tr>
<tr>
<td>Calories: 89</td>
</tr>
<tr>
<td>Calories from Fat: 0</td>
</tr>
<tr>
<td>% Daily Value*</td>
</tr>
<tr>
<td>Total Fat: 0g (0%)</td>
</tr>
<tr>
<td>Saturated Fat: 0g (0%)</td>
</tr>
<tr>
<td>Trans Fat: 0g</td>
</tr>
<tr>
<td>Cholesterol: 0mg (0%)</td>
</tr>
<tr>
<td>Sodium: 22mg (1%)</td>
</tr>
<tr>
<td>Total Carbohydrate: 23g (8%)</td>
</tr>
<tr>
<td>Dietary Fiber: 0g (0%)</td>
</tr>
<tr>
<td>Sugars: 16g</td>
</tr>
<tr>
<td>Protein: 1g</td>
</tr>
<tr>
<td>Vitamin A: 0%</td>
</tr>
<tr>
<td>Vitamin C: 0%</td>
</tr>
<tr>
<td>Calcium: 0%</td>
</tr>
<tr>
<td>Iron: 0%</td>
</tr>
</tbody>
</table>

*Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs.

| Calories per gram: |
| Fat: 9 |
| Carbohydrate: 4 |
| Protein: 4 |

© www.NutritionData.com

Almonds vs. Marshmallows